Convergence analysis of first order reliability method using chaos theory
نویسندگان
چکیده
First order reliability method (FORM) for the computation of reliability index has been used widely because of its advantages of the efficiency and effectiveness as well simplicity for many years. There exists the phenomenon of convergent failure in the FORM in calculating the reliability index iteratively for some limit state functions, for which the essential factor is investigated using chaotic dynamics theory in the present paper. The bifurcation plots of reliability index are presented for several typical limit state functions, and the computational results from those mapping functions due to FORM iterations show the complicated dynamics phenomena such as the periodic oscillation, bifurcation and chaos. Moreover, the Lyapunov exponents of non-linear map from FORM are calculated. From the numerical investigation of presented examples, it is concluded that the convergence of FORM does not depend on the curvature of design points of the limit state function, and the quantitative index for identifying the convergence of FORM iterative computation is the Lyapunov exponents of non-linear map corresponding to that limit state function. 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
Conjugate and Directional Chaos Control Methods for Reliability Analysis of CNT–Reinforced Nanocomposite Beams under Buckling Forces; A Comparative Study
The efficiency and robustness of reliability methods are two important factors in the first-order reliability method (FORM). The conjugate choice control (CCC) and directional chaos control method (DCC) are developed to improve the robustness and efficiency of the FORM formula using the stability transformation method. In this paper, the CCC and DCC methods are applied for the reliability analy...
متن کاملA TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING WITH NEW SIMPLE FILTER AS AN EFFICIENT AND ROBUST FIRST-ORDER RELIABILITY METHOD
The real-world applications addressing the nonlinear functions of multiple variables could be implicitly assessed through structural reliability analysis. This study establishes an efficient algorithm for resolving highly nonlinear structural reliability problems. To this end, first a numerical nonlinear optimization algorithm with a new simple filter is defined to locate and estimate the most ...
متن کاملBending Sector Graphene Sheet Based on the Elastic Winkler-Pstrnak with the Help of Nonlocal Elasticity Theory Using Developed Kantorovich Method
In this study, the elastic bending of sector graphene sheet has been studied based on elasticity using Eringen Nonlocal Elasticity Theory. In order to do this, the balance equations governing the sector graphene sheet have been solved in terms of displacements with regard to nonlocal relationship of stress, shear theory of the first order, and obtained linear strains using developed Kantorovich...
متن کاملAn Enhanced HL-RF Method for the Computation of Structural Failure Probability Based On Relaxed Approach
The computation of structural failure probability is vital importance in the reliability analysis and may be carried out on the basis of the first-order reliability method using various mathematical iterative approaches such as Hasofer-Lind and Rackwitz-Fiessler (HL-RF). This method may not converge in complicated problems and nonlinear limit state functions, which usually shows itself in the f...
متن کاملAnalysis and Diagnosis of Partial Discharge of Power Capacitors Using Extension Neural Network Algorithm and Synchronous Detection Based Chaos Theory
Power capacitors are important equipment of the power systems that are being operated in high voltage levels at high temperatures for long periods. As time goes on, their insulation fracture rate increases, and partial discharge is the most important cause of their fracture. Therefore, fast and accurate methods have great importance to accurately diagnosis the partial discharge. Conventional me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015